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Malware…

Source: http://www.digitaltrends.com/wp-content/uploads/2012/12/Who-can-fight-Android-malware.jpg
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HOST-BASED CODE 

INJECTION ATTACKS
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Code Injection Attacks

Let E be an entity controlled by an attacker. 

Let P be a process targeted by the attacker. 

An active attack on P by E, that aims at 

executing a payload defined by E within the 

context of P is called code injection attack.

 Remote

 Host-Based
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Host-Based Code Injection Attacks (HBCIAs)

 Widely used by current malware

 Several benefits

 Interception of critical information

 Avoidance of detection

 Privilege escalation

 Manipulation of security products



© Cyber Defense Research Group, Fraunhofer FKIE 

6

Concurrent Execution
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Process Hollowing
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HBCIA is a malware family feature

 Dataset consists of eight malware families (32514 

samples)

 Manual inspection of representatives in order to 

determine characteristic API call sequence

 Ran all samples in sandbox and checked for 

characteristic API call sequence

The HBCIA is an inherent malware family feature, i.e. a 

malware author does neither remove this feature nor does 

he change the underlying injection method over time.
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HBCIA is a malware family feature
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BEE MASTER
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Bee Master

 Detection of ongoing HBCIAs

 Transfer of the honeypot paradigm to OS processes

 OS independent

 Processes, Libraries, Threads

 Prototype implementation for Windows NT and Linux
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Bee Master: Architecture

 Queen Bee

 The system‘s brain

 PoC implemented as user 

space process

 Worker Bees

 The system‘s sensors

 Passive behaviour

 Behaviour a priori known

 Configurable
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Bee Master: Control flow

Setup

Worker Bee

Record
information

Analyse 

Information

Terminate

Worker Bee
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Bee Master: Limitations

 Missing attacks

 Detection of process hollowing
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EVALUATION
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Evaluation

 Data set 

 38 families (Windows)

 One family (Linux)

 400 benign programs

 Configuration

 Hardend VMs

 Windows XP, 7, 8, Ubuntu 13.10

 Queen Bee with five Worker Bees

 Four frequently attacked processes

 One random process

Initialize 
VM

Start 
malware

Wait 5 
minutes

Extract
results

from VM

Revert
VM
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Results

 Detection of HBCIAs in 

all cases

 No false positives 

 Many families have 

implemented a black 

listing

 Only two Worker Bees 

are needed for detecting 

all samples
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Performance
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CONCLUSION
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Conclusion

Host-Based Code Injection Attacks are a family 

feature

Bee Master applies the honeypot paradigm to OS 

processes in order to detect ongoing HBCIAs

Capable of detecting current malware operating 

system independently

Malware is very prone to detection during HBCIAs
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