
© Fraunhofer FKIE 

Detecting Host-Based Code 

Injection Attacks 

Cyber Defense

Thomas Barabosch
SPRING 2014, Bochum



© Cyber Defense Research Group, Fraunhofer FKIE 

2

Malware…

Source: http://www.digitaltrends.com/wp-content/uploads/2012/12/Who-can-fight-Android-malware.jpg



© Cyber Defense Research Group, Fraunhofer FKIE 

3

HOST-BASED CODE 

INJECTION ATTACKS



© Cyber Defense Research Group, Fraunhofer FKIE 

4

Code Injection Attacks

Let E be an entity controlled by an attacker. 

Let P be a process targeted by the attacker. 

An active attack on P by E, that aims at 

executing a payload defined by E within the 

context of P is called code injection attack.

 Remote

 Host-Based



© Cyber Defense Research Group, Fraunhofer FKIE 

5

Host-Based Code Injection Attacks (HBCIAs)

 Widely used by current malware

 Several benefits

 Interception of critical information

 Avoidance of detection

 Privilege escalation

 Manipulation of security products



© Cyber Defense Research Group, Fraunhofer FKIE 

6

Concurrent Execution



© Cyber Defense Research Group, Fraunhofer FKIE 

7

Process Hollowing



© Cyber Defense Research Group, Fraunhofer FKIE 

8

HBCIA is a malware family feature

 Dataset consists of eight malware families (32514 

samples)

 Manual inspection of representatives in order to 

determine characteristic API call sequence

 Ran all samples in sandbox and checked for 

characteristic API call sequence

The HBCIA is an inherent malware family feature, i.e. a 

malware author does neither remove this feature nor does 

he change the underlying injection method over time.



© Cyber Defense Research Group, Fraunhofer FKIE 

9

HBCIA is a malware family feature



© Cyber Defense Research Group, Fraunhofer FKIE 

10

BEE MASTER



© Cyber Defense Research Group, Fraunhofer FKIE 

11

Bee Master

 Detection of ongoing HBCIAs

 Transfer of the honeypot paradigm to OS processes

 OS independent

 Processes, Libraries, Threads

 Prototype implementation for Windows NT and Linux



© Cyber Defense Research Group, Fraunhofer FKIE 

12

Bee Master: Architecture

 Queen Bee

 The system‘s brain

 PoC implemented as user 

space process

 Worker Bees

 The system‘s sensors

 Passive behaviour

 Behaviour a priori known

 Configurable



© Cyber Defense Research Group, Fraunhofer FKIE 

13

Bee Master: Control flow

Setup

Worker Bee

Record
information

Analyse 

Information

Terminate

Worker Bee



© Cyber Defense Research Group, Fraunhofer FKIE 

14

Bee Master: Limitations

 Missing attacks

 Detection of process hollowing



© Cyber Defense Research Group, Fraunhofer FKIE 

15

EVALUATION



© Cyber Defense Research Group, Fraunhofer FKIE 

16

Evaluation

 Data set 

 38 families (Windows)

 One family (Linux)

 400 benign programs

 Configuration

 Hardend VMs

 Windows XP, 7, 8, Ubuntu 13.10

 Queen Bee with five Worker Bees

 Four frequently attacked processes

 One random process

Initialize 
VM

Start 
malware

Wait 5 
minutes

Extract
results

from VM

Revert
VM



© Cyber Defense Research Group, Fraunhofer FKIE 

17

Results

 Detection of HBCIAs in 

all cases

 No false positives 

 Many families have 

implemented a black 

listing

 Only two Worker Bees 

are needed for detecting 

all samples



© Cyber Defense Research Group, Fraunhofer FKIE 

18

Performance



© Cyber Defense Research Group, Fraunhofer FKIE 

19

CONCLUSION



© Cyber Defense Research Group, Fraunhofer FKIE 

20

Conclusion

Host-Based Code Injection Attacks are a family 

feature

Bee Master applies the honeypot paradigm to OS 

processes in order to detect ongoing HBCIAs

Capable of detecting current malware operating 

system independently

Malware is very prone to detection during HBCIAs



© Cyber Defense Research Group, Fraunhofer FKIE 

21


