
© Fraunhofer FKIE 

Detecting Host-Based Code 

Injection Attacks 

Cyber Defense

Thomas Barabosch
SPRING 2014, Bochum



© Cyber Defense Research Group, Fraunhofer FKIE 

2

Malware…

Source: http://www.digitaltrends.com/wp-content/uploads/2012/12/Who-can-fight-Android-malware.jpg



© Cyber Defense Research Group, Fraunhofer FKIE 

3

HOST-BASED CODE 

INJECTION ATTACKS



© Cyber Defense Research Group, Fraunhofer FKIE 

4

Code Injection Attacks

Let E be an entity controlled by an attacker. 

Let P be a process targeted by the attacker. 

An active attack on P by E, that aims at 

executing a payload defined by E within the 

context of P is called code injection attack.

 Remote

 Host-Based



© Cyber Defense Research Group, Fraunhofer FKIE 

5

Host-Based Code Injection Attacks (HBCIAs)

 Widely used by current malware

 Several benefits

 Interception of critical information

 Avoidance of detection

 Privilege escalation

 Manipulation of security products



© Cyber Defense Research Group, Fraunhofer FKIE 

6

Concurrent Execution



© Cyber Defense Research Group, Fraunhofer FKIE 

7

Process Hollowing



© Cyber Defense Research Group, Fraunhofer FKIE 

8

HBCIA is a malware family feature

 Dataset consists of eight malware families (32514 

samples)

 Manual inspection of representatives in order to 

determine characteristic API call sequence

 Ran all samples in sandbox and checked for 

characteristic API call sequence

The HBCIA is an inherent malware family feature, i.e. a 

malware author does neither remove this feature nor does 

he change the underlying injection method over time.



© Cyber Defense Research Group, Fraunhofer FKIE 

9

HBCIA is a malware family feature



© Cyber Defense Research Group, Fraunhofer FKIE 

10

BEE MASTER



© Cyber Defense Research Group, Fraunhofer FKIE 

11

Bee Master

 Detection of ongoing HBCIAs

 Transfer of the honeypot paradigm to OS processes

 OS independent

 Processes, Libraries, Threads

 Prototype implementation for Windows NT and Linux



© Cyber Defense Research Group, Fraunhofer FKIE 

12

Bee Master: Architecture

 Queen Bee

 The system‘s brain

 PoC implemented as user 

space process

 Worker Bees

 The system‘s sensors

 Passive behaviour

 Behaviour a priori known

 Configurable



© Cyber Defense Research Group, Fraunhofer FKIE 

13

Bee Master: Control flow

Setup

Worker Bee

Record
information

Analyse 

Information

Terminate

Worker Bee



© Cyber Defense Research Group, Fraunhofer FKIE 

14

Bee Master: Limitations

 Missing attacks

 Detection of process hollowing



© Cyber Defense Research Group, Fraunhofer FKIE 

15

EVALUATION



© Cyber Defense Research Group, Fraunhofer FKIE 

16

Evaluation

 Data set 

 38 families (Windows)

 One family (Linux)

 400 benign programs

 Configuration

 Hardend VMs

 Windows XP, 7, 8, Ubuntu 13.10

 Queen Bee with five Worker Bees

 Four frequently attacked processes

 One random process

Initialize 
VM

Start 
malware

Wait 5 
minutes

Extract
results

from VM

Revert
VM



© Cyber Defense Research Group, Fraunhofer FKIE 

17

Results

 Detection of HBCIAs in 

all cases

 No false positives 

 Many families have 

implemented a black 

listing

 Only two Worker Bees 

are needed for detecting 

all samples



© Cyber Defense Research Group, Fraunhofer FKIE 

18

Performance



© Cyber Defense Research Group, Fraunhofer FKIE 

19

CONCLUSION



© Cyber Defense Research Group, Fraunhofer FKIE 

20

Conclusion

Host-Based Code Injection Attacks are a family 

feature

Bee Master applies the honeypot paradigm to OS 

processes in order to detect ongoing HBCIAs

Capable of detecting current malware operating 

system independently

Malware is very prone to detection during HBCIAs



© Cyber Defense Research Group, Fraunhofer FKIE 

21


