Detecting Host-Based Code Injection Attacks

Thomas Barabosch SPRING 2014, Bochum

Malware...

Source: http://www.digitaltrends.com/wp-content/uploads/2012/12/Who-can-fight-Android-malware.jpg

HOST-BASED CODE INJECTION ATTACKS

Code Injection Attacks

Let E be an entity controlled by an attacker.

Let P be a process targeted by the attacker.

An active attack on P by E, that aims at executing a payload defined by E within the context of P is called code injection attack.

- Remote
- Host-Based

Host-Based Code Injection Attacks (HBCIAs)

- Widely used by current malware
- Several benefits
 - Interception of critical information
 - Avoidance of detection
 - Privilege escalation
 - Manipulation of security products

Concurrent Execution

Process Hollowing

HBCIA is a malware family feature

The HBCIA is an inherent malware family feature, i.e. a malware author does neither remove this feature nor does he change the underlying injection method over time.

- Dataset consists of eight malware families (32514 samples)
- Manual inspection of representatives in order to determine characteristic API call sequence
- Ran all samples in sandbox and checked for characteristic API call sequence

HBCIA is a malware family feature

BEE MASTER

Bee Master

- Detection of ongoing HBCIAs
- Transfer of the honeypot paradigm to OS processes
- OS independent
 - Processes, Libraries, Threads
- Prototype implementation for Windows NT and Linux

Bee Master: Architecture

Queen Bee

- The system's brain
- PoC implemented as user space process

Worker Bees

- The system's sensors
- Passive behaviour
- Behaviour a priori known
- Configurable

Bee Master: Control flow

Bee Master: Limitations

- Missing attacks
- Detection of process hollowing

EVALUATION

Evaluation

- Data set
 - 38 families (Windows)
 - One family (Linux)
 - 400 benign programs
- Configuration
 - Hardend VMs
 - Windows XP, 7, 8, Ubuntu 13.10
 - Queen Bee with five Worker Bees
 - Four frequently attacked processes
 - One random process

Results

- Detection of HBCIAs in all cases
- No false positives
- Many families have implemented a black listing
- Only two Worker Bees are needed for detecting all samples

Performance

CONCLUSION

Conclusion

- Host-Based Code Injection Attacks are a family feature
- Bee Master applies the honeypot paradigm to OS processes in order to detect ongoing HBCIAs
- Capable of detecting current malware operating system independently
- Malware is very prone to detection during HBCIAs

